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The process of nonstationary high-intensity laser surface heating of a three-dimensional body in the shape of
a rectangular parallelepiped by a continuous laser with a normal distribution of the power density in the
heating spot has been investigated numerically with the finite-element method. Consideration has been given
to the process of formation of the heat-affected zone and its geometry. Thermal cycles of zonal points and
their characteristics have been investigated.

Mathematical Model. In constructing a mathematical model of the process of laser surface thermal hardening
of carbon-iron steels [1, 2], one must analyze time changes in the temperature field (thermal cycles) of points of the
heat-affected zone in the process of laser heating.

We consider a variant of solid-phase hardening (without fusing the surface) by a continuous laser. The laser
source will be represented in the approximation of a distributed surface heat source, while the process of interaction
of laser radiation with a substance will be represented as the process of heating. The scheme of thermal loading is
shown in Fig. 1a. For the most adequate results we will employ numerical methods, the most efficient of which is the
finite-element method.

The temperature distribution in the body under study is described by the parabolic heat-conduction equation
[3]

cvρ 
∂T

∂t
 = div (λ grad T) , (1)

where ρ(xi), cv(x
i, T), and λ(xi, T) are the density, the specific heat at constant volume, and the symmetric second-rank

tensor of thermal conductivity of the material with components λij (i, j = 1, 2, 3) respectively. The initial condition
for Eq. (1) has the following form:

T (xi
, t) t=0 = T0 (xi) . (2)

We will assume that a distributed surface heat source with a normal distribution of the (flux) power density in the
heating spot, which moves uniformly and rectilinearly along the coordinate direction x2 with velocity V, is acting on
the body’s surface x3 = 0. With allowance for this fact we represent the boundary conditions (of the second, third, and
fourth kind) as

x
1
 = 0 :   q1 = 0 ;   x

1
 = L1 : q1 = qconv + qrdnt ;

x
2
 = 0 :   q2 = − qconv − qrdnt ;   x

2
 = L2 : q2 = qconv + qrdnt ;

x
3
 = 0 :   q3 = qlas.r − qconv − qrdnt ;   x

3
 = L3 : q3 = qconv + qrdnt ,

(3)
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where qconv = α(T(xi, t) − Tamb.m), qrdnt = σε(T4(xi, t) − Tamb.m
4 ), qlas.r = Aq0 exp (−kr2), r2 = (xcent

2  − x2)2 + (x1)2 =
( V  t − (x2)2)2 + (x1)2, and qi = −λij∂T ⁄ ∂xj, i, j = 1, 2, 3, i = j.

By applying the procedure of the finite-element method in the form of the Bubnov–Galerkin method (integral
formulation of the finite-element method) to the heat-conduction equation (1) and to boundary conditions (3), we can
obtain [4] the matrix equation of heat balance of an ensemble of finite elements

[C] 

 T
.



  + [Λ] 


 T



  = 


 Q



  , (4)

in which the thermophysical characteristics of a material as functions of the temperature are taken into account. There-
fore, it determines a system of nonlinear ordinary differential equations of first order to solve which we will employ
the numerical algorithm [1] constructed on the basis of the two-layer difference scheme [4] and the Newton method
[5] and the conjugate-gradient (Lanczos) method [6].

Calculation Results. The algorithms of the finite-element method were realized in the C++ programming lan-
guage in the form of a program for the MS Windows 2000 operating system with the use of the Borland C++ Builder
5 source development environment for Windows applications. The program represents an interface written for the MS
Windows 2000 operating system with the use of a standard library of visual components of the Borland C++ Builder
5 environment; the interface includes modules (in the form of corresponding h- and cpp-files) realizing the object code
of the finite-element analysis of the problem of heat conduction in laser heating.

The characteristics of the calculation region are presented in Table 1. In the calculation, we employed the fol-
lowing values of the parameters: initial temperature of the body 293 K, average power of laser radiation 500 W, linear
velocity of travel of the beam 8 m/min, diameter of the heating spot 3 mm, coefficient of surface heat transfer 10
W/(m2⋅K), effective coefficient of radiation 0.9, effective coefficient of absorption of the surface 0.9, and temperature
of the ambient medium 293 K. A two-level implicit difference scheme was employed in solution. The error of both
the Newton and Lanczos methods was characterized by the norm of the residual vector of nodal values of the tem-
perature. In both cases we took it to be 0.1 K. Figure 2 shows the distribution of the temperature field on the surface
of the calculation region at different instants of time and different stages of the process of formation of the heat-af-
fected zone that correspond to them.

Fig. 1. Scheme of thermal loading of a body (a) and calculation region (b): 1)
microvolume under study (individual point of a continuum); 2) adiabatic
boundary (by virtue of the symmetry of the calculation region).

TABLE 1. Characteristics of the Calculation Region (material 45 steel)

Parameters x1 x2 x3

Linear dimensions, mm 3 5 2

Number of finite elements 20 40 20

Type of grid Tangential Uniform Tangential
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The position of the heat-affected zone was evaluated as a first approximation by the isotherm T = 1000 K,
which corresponds to the point of polymorphous phase α ↔ γ transition on the equilibrium diagram Fe–C [1]. Thus,
the heat-affected zone involves all the points of the calculation region the peak value of the thermocycle at which is
no lower than 1000 K.

For the technology of laser hardening it is of interest to consider the characteristics of a certain cross section
x2 = const that falls within the zone of the quasistationary regime of heating for the reason that other such cross sec-
tions that are at a rather large distance from the edges of the calculation region along the x2 axis will be characterized
analogously.

Fig. 3. Distribution of the temperature field along the coordinate direction x2

at different instants of time, sec: 1) 0; 2) 2.5⋅10−3; 3) 5⋅10−3; 4) 7.5⋅10−3; 5)
1⋅10−2; 6) 1.25⋅10−2; 7) 1.5⋅10−2; 8) 1.75⋅10−2; 9) 2⋅10−2; 10) 2.25⋅10−2; 11)
2.5⋅10−2;  12) 2.75⋅10−2;  13) 3⋅10−2;  14)  3.25⋅10−2; 15) 3.5⋅10−2; 16)
3.75⋅10−2; 17) curve of the maximum values. T, K; x2, mm.

Fig. 4. Family of thermal cycles of the points distributed along the coordinate
direction x2, mm: 1) 0; 2) 0.5; 3) 1.0; 4) 1.5; 5) 2.0; 6) 2.5; 7) 3.0; 8) 3.5;
9) 4.0; 10) 4.5; 11) 5.0. T, K; t, sec.

Fig. 2. Distribution of the temperature field over the surface of the calculation
region (1, 2, 3) and process of formation of the heat-affected zone (4, 5, 6) at
different instants of time, sec: 1 and 4) 7.5⋅10−3; 2 and 5) 2.25⋅10−2; 3 and 6)
3.75⋅10−2.
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Figure 3 shows the distribution of the temperature field at different instants of time along the coordinate di-
rection x2 on which we observe a quasistationary regime of heating: the difference in the peak values of the thermo-
cycles of the points lying on the coordinate axis x2 (Fig. 4) in the interval 2.53 mm ≤ x2 ≤ 3.78 mm does not exceed
6 K. The minimum value is observed at the point x2 = 2.55 mm and is 1361.5 K, while the maximum value is ob-
served at the point x2 = 3.75 mm and is equal to 1367.4 K for an average peak value of 1364.5 K. The inconsistency
between the minimum value of the temperature and the left-hand limit of the interval selected and between the maxi-
mum value and the right-hand limit is attributed to the computational error, which, however, is small.

Let us investigate the cross section that falls within the zone of quasistationary heating and that is at a rather
large distance from both ends of the calculation region along the coordinate direction x2. We select x2 = 3 mm as
such a cross section.

The temperature-field distribution over the width of the cross section in question (along the vector 

 3, 0, 0
_____





with the origin at the point (0, 3, 0)) is shown in Fig. 5a for the heating stage and in Fig. 5c for the cooling stage.
In these figures, we can track the time change in the extent of the heat-affected zone of this cross section along the
coordinate direction x1 (its width) and can determine its final value as the maximum abscissa of those of the points of
intersection of the isotherm T = 1000 K and the temperature-distribution curves. Proceeding in this manner, we find
that the width of the heat-affected zone is equal to C653 µm.

The temperature-field distribution over the height of the cross section in question (along the vector 

 0, 0, 2
_____





with the origin at the point (0, 3, 0)) is shown in Fig. 5b for the heating stage and in Fig. 5d for the cooling stage.
In these figures, we can analogously track the time change in the extent of the heat-affected zone of this cross section
along the coordinate direction x2 (its height) and can determine its final value, which was C123 µm.

The extent of the heat-affected zone of the cross section in question along the directions x1 (over the width)
and x3 (over the height) can be determined by analyzing thermal cycles at the points (Fig. 6) that lie along the vectors

Fig. 5. Distribution of the temperature field in the cross section x2 = 3 mm in
the stage of heating (a, b, 1–11) and cooling (c, d, 1–7) over the height (a, c)
and the width (b, d) at different instants of time, sec: 1) 0; 2) 2.5 ⋅10−2; 3)
5⋅10−3; 4) 7.5⋅10−3;  5) 1⋅10−2; 6) 1.25⋅10−2; 7) 1.5⋅10−2; 8) 1.75⋅10−2; 9)
2⋅10−2; 10) 2.25⋅10−2; 11) 2.27⋅10−2, limiting heating curve (in the stage of
heating); 1) 2.27⋅10−2; 2) 2.25⋅10−2; 3) 2.75⋅10−2; 4) 3⋅10−2; 5) 3.25⋅10−2; 6)
3.5⋅10−2; 7) 3.75⋅10−2 (in the stage of cooling). T, K; x1 and x3, mm.
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determined above: at the points determining the boundaries of the cross-sectional heat-affected zone, the peak values
of the thermal cycles are equal to 1000 K.

Based on Figs. 4 and 6, we can estimate the average rates of heating and cooling for the cross section x2 =
3 mm. For the points lying within the heat-affected zone of the cross section in question the average rate of heating
was 4.99⋅105–0.93⋅106 K/sec while the average rate of cooling was 5.09⋅104–1.59⋅104 K/sec. The calculated results ob-
tained are in good agreement with experimental data [7], which determine the interval of the rates of heating and cool-
ing as 105–106 K/sec and 104–105 K/sec respectively.

The temperature-field distribution over the cross section x2 = 3 mm at the instant of time t = 2.27⋅10−2 sec
corresponding to the peak value of a thermocycle at the point (0, 3, 0) is given in Fig. 7a, and the geometry of the
heat-affected zone of the cross section in question is shown (in black) in Fig. 7b.

Analyzing the data in Fig. 5, we can infer that with the prescribed scheme of thermal loading for a cross sec-
tion that falls within the zone of quasistationary heating the temperature change over the height of the cross section
significantly exceeds the temperature change over its width. This is a consequence of the action of the heat-conduction
mechanism under different conditions: the cross section is subjected to heating over the width, whereas the action of
the heat sources over the height is absent. Thus, at the boundary of the heat-affected zone in the x3 direction, there is
a "cold" metal, which contributes to a more intense removal of heat from the heat-affected zone in this direction.

The maximum time of stay above the temperature of the α ↔ γ transition for the cross section selected is ob-
served at the point (0, 3, 0) and is 1.45⋅10−2 sec. This time decreases as the boundary of the heat-affected zone is
approached, and it becomes equal to zero behind the boundary. The value of the time of stay is of primary importance
in the formation of the final structure of steel and its properties — it limits the diffusion processes of austenization
and homogenization in the stage of heating. Since we observe thermocycles having generally different times of stay

Fig. 6. Family of thermal cycles of the points distributed over the width (a)
and height (b) of the cross section x2 = 3 mm: 1) 0; 2) 2.5⋅10−1; 3) 5⋅10−1; 4)
0.75⋅10−1; 5) 1.0; 6) 1.25; 7) 1.5; 8) 1.75; 9) 2.0; 10) 2.25; 11) 2.5; 12) 2.75;
13) 3.0. T, K; t, sec.

Fig. 7. Distribution of the temperature field (a) over the cross section x2 = 3
mm at the instant of time t = 2.27⋅10−2 sec [1) isotherm 1000 K] and geome-
try of its heat-affected zone (b).
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above the temperature of the α ↔ γ transition at the points of the cross section with such a thermal-loading scheme
and the peak value and the heating and cooling rates, the final structure and properties of the hardened steel in the
heat-affected zone are spatially nonuniform.

Thus, the results of the calculations show that the thermal cycles obtained of the points within the heat-af-
fected zone of the cross section x2 = const that falls within the zone of the quasistationary regime of heating possess
the features of laser thermocycles, which are characterized by high heating and cooling rates, a high peak value of the
temperature, and a short time of stay above the temperature of the α ↔ γ transition.

NOTATION

cv, specific heat at constant volume, J/(m3⋅K); ρ, density, kg/m3; T, temperature, K; t, time, sec; λ, thermal-
conductivity tensor; xi, ith, coordinate direction (axis); λij, component of the thermal-conductivity tensor; T0, initial
temperature of the body, K; V, vector of the linear velocity of travel of the laser beam, [ V ] = m/sec; qi, specific
flux (density), W/m2; qconv, qrdnt, and qlas.r, specific fluxes (densities) reflecting the convective and radiant modes of
heat exchange and laser heating respectively, W/m2; Li (i = 1, 2, 3), linear dimension of the calculation region (in the
shape of a parallelepiped) along the ith coordinate direction, m; α(xi, T), coefficient of surface heat transfer, W/(m2⋅K);
Tamb.med, temperature of the ambient medium, K; ε, effective coefficient of radiation of the heated surface, dimension-
less quantity; σ, Stefan–Boltzmann constant, 5.67051(19)⋅10−8 W/(m2⋅K−4); A, absorption coefficient of the surface, di-
mensionless quantity; q0, maximum value of the density of the flux from laser radiation, W/m2; k, concentration
coefficient of normal distribution, m−2; r, distance from the center of the heating spot with coordinates (0, xcent

2 , 0) to
the point with coordinates (x1, x2) on the surface of the body x3 = 0; xcent

1  = const = 0 and xcent
2  = var =  V t, co-

ordinates of the center of the laser-heating spot, m; qi = −λij∂T ⁄ ∂xj, flux densities from the Fourier heat-conduction
law, W/m2; [C], global heat-capacity matrix, J/K; [Λ], global conduction matrix, W/K; 


 Q



 , global matrix of generalized

concentrated heat fluxes, W; 

 T
.



 , column matrix of nodal values of the derivatives of temperature with respect to time,

K/sec; 

 T



 , column matrix of nodal values of the temperature, K; α ↔ γ, notation of the structural polymorphous eutec-

toid phase transition in iron-based alloys; Fe–C, notation of the "iron–carbon" phase diagram of state of Fe-based al-
loys in coordinates (T, c): temperature, concentration of carbon in the alloy; ∆t, value of the time interval, sec.
Subscripts: las.r, laser radiation; conv, convective; rdnt, radiant; amb.med, ambient medium; cent, center.
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